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Chasing the Tail in Monocular 3D Human
Reconstruction with Prototype Memory

Yu Rong, Ziwei Liu and Chen Change Loy

Fig. 1: Overview. In (a), we show one typical singular human prototype used by previous works [1]. In (b), we plot the
relationship between the samples’ distances to the mean parameters and models’ reconstruction error (mean per-vertex position
error) on the two widely used evaluation sets, i.e. the evaluation sets of Human3.6M [2] and 3DPW [3]. We select two
state-of-the-art 3D human reconstruction models, namely SPIN [1] and DecoMR [4]. In (c), we show several typical examples
with gradually increasing distances to the human prototype depicted in (a). As the figure shows, the model (SPIN [1]) generates
less precise results on samples with larger distances.

Abstract—Deep neural networks have achieved remarkable
progress in single-image 3D human reconstruction. However,
existing methods still fall short in predicting rare poses. The
reason is that most of the current models perform regression
based on a single human prototype, which is similar to common
poses while far from the rare poses. In this work, we 1)
identify and analyze this learning obstacle and 2) propose a
prototype memory-augmented network, PM-Net, that effectively
improves performances of predicting rare poses. The core of
our framework is a memory module that learns and stores a
set of 3D human prototypes capturing local distributions for
either common poses or rare poses. With this formulation, the
regression starts from a better initialization, which is relatively
easier to converge. Extensive experiments on several widely
employed datasets demonstrate the proposed framework’s ef-
fectiveness compared to other state-of-the-art methods. Notably,
our approach significantly improves the models’ performances on
rare poses while generating comparable results on other samples.

Index Terms—Motion Capture, 3D Pose Estimation, Clustering

I. INTRODUCTION

Recovering 3D human models from single-view monocular
images facilitates numerous applications in augmented reality
and creative entertainment. Most existing methods [1], [4], [5],
[6], [7] employ a parametric 3D human shape model known as
Skinned Multi-Person Linear Model (SMPL) [8] to represent
3D humans and use deep neural networks (DNN) to estimate

its parameters. They also employ 3D human prototypes, such
as mesh template [4], [7] or mean parameters [1], [5], as
the foundation to predict 3D human models. Using these
methods, models produce satisfactory results for images with
common poses. However, performances of these models
decline drastically when applied to images with rare poses
or uncommon views, as shown in the third row of Fig. 1 (c).

Performance degradation in predicting rare poses is primarily
caused by the usage of a single 3D human prototype for all the
samples. The human prototype calculated from these datasets,
as visualized in Fig. 1 (a), is more similar to common poses
with usual viewpoints, such as standing. Models trained with
this single prototype inherently bias towards the common poses
while performing less well on rare poses. To illustrate this
phenomenon, we show the visualization of the single human
prototype used by SPIN [1] in Fig 1 (a) and calculate the
Euclidean distance of each sample to the human prototype. We
use the distances between the corresponding SMPL vertices. As
depicted in Fig. 1 (b), when a single prototype is adopted, two
state-of-the-art models, namely SPIN [1] and DecoMR [4],
perform well on samples close to the human prototype.
However, their reconstruction errors rise rapidly on samples
that have a larger distance to the mean parameters.

Take SPIN [1] and Human3.6M [2] for instance, the recon-
struction errors of samples with distances to mean parameters
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of around 4.3 is 20% larger than those with distances to
mean parameters of around 2.0. The performance drop is more
severe on challenging in-the-wild datasets such as 3DPW [3].
We further show several typical examples in Fig. 1 (c). It is
observed that current state-of-the-art models’ performances
start to corrupt when the samples’ poses gradually differ from
the human prototype. For better clarification, in the following
of the paper, we call the samples that are close to the human
prototype as head classes and the samples far from the human
prototype as tail classes. Head classes are typically composed
of common poses, while rare poses majorly lie in tail classes.

To ameliorate the models’ performance collapse on tail
classes, we propose a prototypical memory network, PM-Net.
The core of PM-Net is a memory module that stores multiple
3D human prototypes, each of which covers a non-overlapping
subset of the data. Instead of using one single prototype for
all data samples, we assign each data to the closest prototype
in the memory. In this way, the distance of data to its assigned
prototype is significantly reduced. The regression process starts
from a much better initialization. Furthermore, the regression
process is transformed to be performed on compact local
distributions instead of on the global yet sparse distribution.
During inference, a classifier is employed to assign input data
to the corresponding prototype, which serves as the basis for
the follow-up SMPL parameter regression.

Previous works such as LCR-Net [9] also adopt multiple
human prototypes by applying standard K-Means on 3D
pose data. However, it is not feasible to directly apply the
same method in 3D human reconstruction. Firstly, although
the distances between 3D poses can be easily measured by
Euclidean distance between coordinates, it is not reasonable to
use the same metric on SMPL parameters. Instead, Euclidean
distances between vertices are more reasonable. Furthermore,
the weights of each vertex should be elaborately selected in
calculating the distance. For example, the number of vertices
that belong to the head is nearly the same as the number of
vertices of limbs, while the latter has much more influence on
the overall poses and thus should be placed larger weights in
distance calculation. Another issue is how to obtain the centers
of each cluster after clustering. A direct average of vertices is
obviously infeasible since the resulting vertices are highly likely
to not lie in the valid human body topology. Therefore, we
choose to conduct on the samples’ SMPL parameters and apply
separate averaging strategies on pose and shape parameters to
better suit their properties.

In summary, we make the following contributions: We
identify the relationship between monocular 3D human re-
construction models’ performances and samples’ distances to
the applied singular human prototype. To improve the models’
performances on tail classes, we design a prototype memory
module to fully leverage the information contained across all
samples with both common and rare poses. Thanks to the
unique formulation of local prototypes, our method improves
the models’ performances on both tail classes and the overall
samples. Our model achieves state-of-the-art performances on
Human3.6M [2], MPI-INF-3DHP [10], 3DPW [3], and UP-
3D [11]. In particular, the model’s average reconstruction errors
on tail classes are reduced by 12 mm on challenging in-the-

wild dataset, i.e. UP-3D [11]. The proposed method is easy to
implement and can be adapted to various frameworks or other
visual tasks that perform regression from mean parameters.

II. RELATED WORK

3D Body Pose Estimation. In recent years, researchers adopt
deep neural networks to resolve the challenging task of 3D body
pose estimation. Pioneers [12], [13], [14] use convolutional
neural networks to directly regress 3D body joint coordinates.
More recent works either use 3D heatmaps [15], [16], [17],
[18], [19] to pursure better pixel location or leverage 2D poses
to serve as the auxiliary [20], [21], [22], [23], [24]. Recently,
there is a surge of 3D pose estimation works trying to produce
3D poses lifted from input 2D poses [25], [26], [27], [28],
[29], [30], [31], [32], [33], [31]. 3D pose estimation is closely
related to 3D human pose and shape recovery. Due to the lack
of direct supervision, most of the 3D human reconstruction
works [5], [34], [35], [36], [37] leverage 3D joint positions in
model training. There are also works that directly leverage 3D
poses during inference. Choi et al [38] estimate 2D and 3D
poses as intermediate representation and then obtain the final
3D meshes. HybrIK [39] uses estimated 3D joint locations to
directly calculate the global orientations and part of the joint
rotations for 3D human reconstruction.
Single-Image 3D Human Reconstruction. Most works of
3D human pose and shape recovery use a parametric model
SMPL [8] to represent 3D humans. Although there are works
that cope with sequential input [40], [41], [42], [43], [44],
[45], multi-view images [46], [47], [48], [49], [50], or point
clouds [51], [52], we majorly discuss works that estimate 3D
humans from monocular single images. Recent methods for
single-image 3D human reconstruction share a similar pipeline.
In particular, DNN or optimization is employed to obtain the
parameters or vertex coordinates of the SMPL model. Most
learning-based methods [5], [53], [54], [34], [35], [55], [56],
[36], [37], [57], [58], [59], [60], [61] use CNN-based models
to predict the parameters of SMPL directly. Kanazawa et al [5]
use adversarial losses [62] to judge the predicted 3D human
poses. Pavlakos et al [53] propose to predict the 2D poses
heatmaps and silhouette as the intermediate representation to
facilitate the model prediction. A series of works [6], [54],
[34], [63], [64], [65] incorporate DensePose [66] into the
framework. Georgakis et al [55] adopt a hierarchical strategy
to predict the SMPL poses part by part, instead of regressing
parameters altogether. PARE [67] adopts part attentions to
replace the previously used global features. Other researchers
exploit the self-contact [57] or cloth-semantics [68] to increase
the prediction accuracy. Other learning-based methods adopt
different frameworks. Kolotouros et al [7] and Choi et al [38]
use graph convolution network [69] to predict SMPL vertices
directly while Lin et al [70] uses transformer architecture [71].
Moon et al [35] uses 1D-hetmaps to encode SMPL vertices.
Zeng et al [4] and Zhang et al [72] regress UV maps instead
of the original SMPL parameters or vertices.

Optimization-based methods optimize the SMPL parameters
instead of using DNNs. Bogo et al [73] obtain SMPL param-
eters by minimizing the distances between ground-truth 2D
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Fig. 2: Overall framework of PM-Net. The framework is composed of an image encoder � , a classifier �, a parameter
estimator �, and a prototypical memory " . The most important component that distinguishes our work from other methods
is the Prototypical Memory " that stores multiple sets of mean parameters. Using the classification score 2 generated by
the classifier, the matching mean parameters q̄ are then selected from the memory ". Parameter Estimator � then uses the
matching mean parameters as the initialization and regresses the SMPL parameters q after several iterations. In the end, SMPL
model generates the corresponding vertices and joints of the predicted parameters.

keypoints and projected 2D keypoints from predicted SMPL
models. Kolotouros et al [1] design a framework to unify
the learning-based and optimization-based methods. They first
deploy a CNN model to predict the SMPL parameters of the
given images. The predicted SMPL parameters then serve as
the initialization of the optimization fitting [73]. After that, the
optimized SMPL parameters are used to supervise the CNN
model. Those steps iterate until convergence. Our model shares
a similar framework as SPIN [1] while we use the fitted SMPL
parameters to supervise the model instead of performing “in-
the-loop” optimization in the training process. Another major
difference is that we apply prototypical memory and assign
each sample the closest prototype learned from data.
Prototypes used in 3D Human Reconstruction. HMR [5]-
based methods [1], [54], [34], [37], [60], [68], [57], [60], [36]
use mean parameters calculated from the datasets to represent
the 3D human prototype. Güler et al [66] use a set of Euler
angles to form a convex hull as the basis for SMPL pose
prediction. Kolotouros et al [7] and Lin et al [70] use mesh
template as the input to directly regress 3D vertices of the
SMPL model. DecoMR [4] also adopts the reference mesh as
the base for predicting location maps. Although these works
achieve promising results on common poses, their performances
drop drastically when applied to images with rare poses. It
is because such methods only adopt one single 3D human
prototype close to common poses while far from rare poses.
Therefore, these methods are biased towards predicting common
poses. To overcome this drawback, we propose to use multiple
3D human prototypes. Each data sample is assigned to the
closest learned prototype. To our knowledge, LCR-Net [9] is
the only work that applies multiple prototypes in the 3D human
estimation area. The prototypes used by LCR-Net are obtained
from obtaining Naive K-Means to 3D pose data. Nevertheless,
obtaining effective prototypes for 3D human reconstruction is

TABLE I: List of mathematical symbols.

Meaning Math Symbol
SMPL Pose Parameters \

SMPL Shape Parameters V

SMPL Parameters q = (\, V)
SMPL Vertices +

SMPL Joint Regressor �

3D Joints � 3�

2D Joints � 2�

Keypoints Visibility `

Cluster Center c

Weights for each Vertex ,

Number of Clusters  

Input Image �

Image Encoder �

Classifier �

Parameter Estimator �

Prototypical Memory "

Encoded Feature 5

Classification Score 2

Mean Parameters q̄

Predict Parameters ?ℎ8

not that trivial. Directly applying Naive K-Means on SMPL
parameters, i.e., pose parameters and shape parameters, will
lead to suboptimal performance. To circumvent this hurdle, we
elaborately design a specified clustering algorithm for SMPL
model, which is more effective in 3D human reconstruction.

III. METHODOLOGY

In this section, we will first introduce the 3D human model
and the inference process of PM-Net. Next, we present the
design of prototypical memory. Finally, we discuss the training
strategy used in this work. The mathematical symbols used in
this paper are listed in Tab. I.
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Fig. 3: Visualization of vertices belonging to different body
parts. In performing part-aware weighting, we divide the whole
body into different body parts and assign different weights
for each part. The body parts include head, hand, foot, limbs
(arms and legs), and torso.

A. 3D Human Model

We use SMPL [8], a triangle-mesh-based model parame-
terized by the shape and pose parameters to represent a 3D
human model. The shape parameters V ∈ R10 influence the
overall body shape. The pose parameters \ model both the
relative 3D rotations for a predefined kinematics skeleton with
23 joints and the global rotation for the whole body. The
original SMPL pose parameters are in axis-angle representation.
Follow the practice of SPIN [1], we use the continuous rotation
representations proposed by Zhou et al [74] to represent 3D
rotations. Therefore, the dimension of pose parameters becomes
\ ∈ R6×24. Given the shape and pose parameters, SMPL model
calculates the coordinates of vertices + ∈ R3×6890. Given
SMPL vertices + , 3D joints �3� ∈ R3×24 are obtained by
using predefined joint regressor � ∈ R24×6890 by �3� = + · �) .

B. Framework

The overall framework is shown in Fig. 2. A single image �
serves as the only input. The image encoder � takes in input
� and outputs encoded feature 5 . The encoded feature is then
fed into the classifier �, which then produces the classification
score 2. The score 2 is then used to selected the matching
mean parameters q̄ = (\̄, V̄) from the prototypical memory " .
Taking the encoded feature 5 and selected mean parameters q̄
as the input, the parameter estimator � regresses the SMPL
parameters q. In the last step, 3D meshes are generated by the
SMPL model using the estimated parameters.

The image encoder � is a ResNet-50 [75]. The classifier �
is a one-layer MLP with dimension  , which is the number
of prototypes in the prototypical memory ". The parameter

estimator � is a three-layer MLP. The dimensions of each layer
are 1024, 1024, and 157, respectively. The 157 dimensions are
composed of shape parameters (10), pose parameters (6 × 24)
and camera parameters (3). Following the practice of previous
works [1], [5], the final parameter q is obtained through iterative
error feedback (IEF). To be specific, the estimator � takes
the concatenation of encoded feature 5 ∈ R1×1024 and current
estimated parameter qC ∈ R1×157 (qC is initialized as mean
parameters q̄ in the first loop q0 = q̄) as input and outputs
the parameter residual ΔqC . The estimated parameter is then
updated by adding the current parameter and the residual qC+1 =
qC + ΔqC . The whole loop iterates for 3 times.

Contrary to the previous practices [1], [5] that use the same
mean parameters for all samples, our model selects the best
matching mean parameters for each sample. The framework
maintains a prototypical memory " ∈ R ×157 composed of
multiple sets of mean SMPL parameters (camera parameters in
each prototype are identical). Given each sample, the matching
set of parameters is selected. In data preprocessing, each data
sample is assigned a one-hot class label 2̂ ∈ R1× , indicating
to which set of mean parameters the sample is closest to.
During inference, classification score 2 ∈ R1× produced by the
classifier � for each sample is used to select mean parameters
q̄ from the prototype memory " as q̄ = 2" .

C. Building Prototypical Memory

To construct the prototypical memory ", we first apply
clustering on the training data. The obtained cluster centers are
used to compose the memory. Instead of applying Naive K-
Means on SMPL parameters q = (\, V), we elaborately design
a clustering algorithm that exploits the characteristics of 3D
human reconstruction. The algorithm is based on K-Means
with the following modifications:
1) Distance calculating – Instead of calculating the distances
between parameters q, we use the SMPL model to obtain the
vertices + of the corresponding parameters q. Then we calculate
the Euclidean distance based on the vertex coordinates. We
argue that this distance format is more suitable since it directly
and effectively reflects the pose and shape variations across
different samples. Furthermore, in calculating the distances
based on vertices, we find it is suboptimal to assign the same
weights to all the vertices. For example, the number of vertices
belonging to the head is similar to the number of vertices of
limbs, while the limbs have more influence on the overall pose
estimation. Therefore, we assign larger weights to body parts
that have more influence on pose estimation while smaller
weights to the other parts. We call this strategy as part-aware
weighting. In our experiment, the weights for vertices belonging
to different body parts are empirically set as 5.0 for limbs (arms
and legs), 0.3 for head and hand, 0.5 for foot, and 1.0 for
torso. Visualization of each body part is shown in Fig. 3.
2) Cluster center updating – To update the centers of each
cluster after each iteration, a straightforward idea is to directly
average pose and shape parameters of the assigned samples.
Averaging shape parameters is valid since the process of
blending shapes is linear. Nevertheless, directly averaging pose
parameters, which are in the form of 3D rotations, is not
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Algorithm 1 Part-Aware 3D Human K-Means

Require: Threshold for average sample-to-center distance Ŵ;
Require: Threshold for total number of iterations _̂.
Require: N samples: Φ = {q1, ...q# }; q8 ∈ R154

Require: Initial clusters centers: Π = {c1, ..., c }; c 9 ∈ R154,
Require: Weights for each vertex , ∈ R3×6890.

1: procedure CLUSTERING(Ŵ, _̂, Φ, Π, ,)
2: Initialize sets of assigned samples Φ8 = {}, 8 =

1, . . . ,  
3: Initialize set of sample-to-center distances. Γ = {}.
4: Initialize average sample-to-center-distance W̄ = ∞;
5: Initialize the number of iterations _ = 0.
6: while W̄ < Ŵ or _ < _̂ do
7:
8: for 8 ← 1, # do ⊲ Assign samples.
9: for 9 ← 1,  do

10: +8 = B<?; (q8); + 9 = B<?; (c 9 );
11: W8 9 = ‖(+8 −+ 9 ) ◦, ‖22
12: end for
13: 08 = argmin 9 (W8 9 ).
14: W8 = argminW8 9 (W8 9 ).
15: Add sample q8 to 08-th cluster.
16: Add distance W8 to Γ.
17: end for
18:
19: for 9 ← 1,  do ⊲ Update cluster centers.
20: Θ 9 = {}, � 9 = {}
21: for q 9: in Φ 9 do
22: (\ 9: , V 9: ) = q 9: .
23: Add \ 9: to Θ 9 .
24: Add V 9: to � 9 .
25: end for
26: \ 9 = 0E4A064_\ (Θ 9 ).
27: V 9 = 0E4A064_V(� 9 ).
28: c 9 = (\ 9 , V 9 ).
29: end for
30:
31: W̄ = 0E4A064(Γ). ⊲ Update average distances.
32: _ = _ + 1.
33: end while
34: end procedure

reasonable, as pointed out by previous works [77]. To obtain
the valid averaged rotations, we first transfer the 3D rotations
to the format of quaternions. Then we apply the quaternion
averaging algorithm proposed by Markley et al [77].

To be more specific, suppose we have = quaternions @8 to
be averaged, the averaged quaternions @̄ can be obtained by
solve the following equations:

" =

8=1∑
=

@8@
)
8

@̄ = argmax
@∈S3

@)"@

(1)

S3 is the 3 dimensional unit sphere. The solution of the
maximization problem is the eigenvector of " corresponding

Fig. 4: Visualization of the clusters. We use t-SNE [76] to
visualize the distribution of clusters obtained from P3DH K-
Means. The samples are randomly selected from the training
data. The number of clusters is set to be 10 for better
visualization.

to the maximum eigenvalue. We refer the readers to the original
paper [77] for more details.

Equipped with the aforementioned characteristics, we design
a new clustering algorithm for 3D human reconstruction called
Part-Aware 3D Human K-Means (P3DH K-Means). The whole
process of P3DH K-Means is composed of initialization, sample
assignment, and center updating. The number of clusters is
fixed to be  . Suppose we use # samples in performing the
clustering. Each sample is represented as the concatenation of
its pose parameters \8 ∈ R6×24 and shape parameters V8 ∈ R10.
The centers of each cluster c 9 are represented in the same way.
In the initialization step, we randomly select  samples from
the training data and use them as the initial cluster centers.
In the cluster assignment step, for each sample, the distances
of its SMPL vertices between the SMPL vertices of each
cluster center are calculated. The sample is then assigned to
the closest cluster based on the distances. In the center updating
step, shape parameters are calculated by directly averaging the
shape parameters of the assigned samples. The pose parameters
of the assigned samples are first converted to quaternions
format. Then the quaternion averaging algorithm in Eq. (1)
proposed in [77] is used to obtain the averaged quaternions.
After that, the averaged quaternions are converted back to
the continuous rotation representation [74]. The processes
of sample assignment and center updating iterate until the
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algorithm converges. The whole process of P3DH K-Means is
presented in Algorithm 1.

In Fig. 4, we visualize the distribution of clusters via t-
SNE [76] and the corresponding cluster centers (prototypes).
To be specific, we randomly select around 6000 samples from
the training data. The number of clusters is set to be 10 for
better visualization. It is observed that samples are clearly
separated by the clusters obtained from the proposed P3DH
K-Means algorithm. Besides, the obtained cluster centers cover
both common and rare poses with different view types.

D. Training Scheme

We employ 3D and 2D losses to train our model. The 3D
loss is composed of SMPL pose parameter loss ! \ , SMPL
shape parameter loss !V and 3D joint loss !�3� . These losses
are defined as follows:

! \ = ‖\ − \̂‖22,
!V = ‖V − V̂‖22,
!�3� = ‖�3� − �̂3� ‖22,

(2)

where \̂, V̂ and �̂3� are ground truth SMPL pose parameters,
shape parameters and 3D Joints.

To estimate 2D keypoints, we adopt a weak perspective
camera model that is composed of scale B and camera
translation [CG , CH]. The camera parameters [B, CG , CH , ] are also
predicted by the parameter estimator �. Given the camera
parameters, 2D keypoints �2� are projected from �3� . Then
predicted �2� is used to calculate the 2D keypoint loss !�2�
with the ground-truth 2D keypoints �̂2� . The whole process is
formulated as below,

�2�
G = B × �3�

G + CG ,
�2�
H = B × �3�

H + CH ,
!�2� = ‖` · (�2� − �̂2�)‖22,

(3)

where ` is the visibility indicator.
Since our model requires assigning different prototypes to

each sample, we apply a cross-entropy classification loss !� ,
defined as:

!� = −2̂ · log(2). (4)

Overall Loss Function. The overall loss ! is defined as:

! = _1!�3� + _2!�2� + _3! \ + _4!V + _5!� . (5)

In experiments, we set _1 = _2 = 5.0, _3 = 1.0, _4 = 1e−3
and _5 = 1.0. These hyper-parameters are obtained from grid
search.
Training schedule. We first use the singular human prototype
of SPIN [1] (depicted in Fig. 1 (a)) to train image encoder �
and parameter estimator � from scratch. The losses defined in
Eq. (2) and Eq. (3) are adopted in this stage. Then we finetune
the image encoder � and parameter estimator � together with
the classifier � using the prototypical memory " and losses
defined in Eq. (5). In both stages, the batch size is set to be
256, and Adam optimizer [78] with a learning rate 1e−4 is
employed to train the models.

TABLE II: Ablation studies on the whole evaluation sets.
We show evaluation results of PM-Net leveraging the variants
of prototypical memory. The models are evaluated on the
whole evaluation sets of each dataset. The evaluation metric is
MPVPE.

Dataset → Human3.6M [2] 3DPW [3] UP-3D [11]Methods ↓
SPIN [1] 78.7 117.8 119.3

Naive K-Means 79.1 116.6 115.1
Random Select 76.9 115.9 114.1
3DH K-Means 75.4 115.8 113.5

P3DH K-Means 73.6 114.6 112.6

IV. EXPERIMENTS

In this section, we first introduce the experiment setup.
Then we discuss the design of key features of the prototypical
memory. After that, we compare our method with previous
state-of-the-art methods. In the end, we provide further analysis
on the design of PM-Net and typical failure cases.

A. Experimental Setting

In our experiments, we employ several 3D human datasets:
Human3.6M [2], MPI-INF-3DHP [10], 3DPW [3], and UP-
3D [11]. To increase the generalization ability of the models, we
also adopt several in-the-wild 2D datasets, including LSP [79],
MPII [80], and COCO [81]. Human3.6M, MPI-INF-3DHP,
MPII, LSP, and COCO are used for training. Our models
are evaluated on Human3.6M, MPI-INF-3DHP, 3DPW, and
UP-3D. In the following of this subsection, we first discuss
the evaluation metrics used in our work. Then we give brief
introductions to each dataset.
Evaluation Metrics. We mainly use mean per-vertex position
error (MPVPE) as the evaluation metric. We believe MPVPE
is more suitable than joint-based metrics such as mean per-
joint position error (MPJPE), since the latter only considers
joint positions while neglecting the joint rotations and body
shapes. For completeness, we also adopt MPJPE and PA-
MPJPE (MPJPE after applied Procrustes Analysis [82]). These
two metrics are used to compare with the previous works and
evaluate on datasets without ground-truth SMPL parameters,
such as MPI-INF-3DHP [10]. The units of aforementioned
metrics are all millimeter (mm).
Human3.6M. Human3.6M [2] is an indoor dataset with
3D joint annotations. We use Mosh [83] to collect SMPL
parameters from 3D Mocap markers. Our models are trained
on subject S1, S5, S6, S7, and S8 and evaluated on S9 and
S11. Following the practice of previous works [1], [5], we only
evaluate on samples of the frontal camera (camera 3). This
evaluation strategy is often called “Protocol-2” in the literature.
MPI-INF-3DHP. The dataset [10] is captured with a multi-
view camera system under a controlled environment. We use
the subject S1 to S8 for training and evaluate our models
on the evaluation set. The original dataset only provides 3D
joints. In training, we also use the pseudo ground truth SMPL
parameters provided by SPIN [1] through multi-view fitting.
3DPW. Images of 3DPW [3] are captured from in-the-wild
scenarios. The ground truth SMPL pose parameters are obtained
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Fig. 5: Ablation studies on subsets. We show the performances of the proposed PM-Net using four different clustering
methods, namely Naive, K-Means, Random Center, 3DH K-Means, P3DH K-Means. Models are evaluated on Human3.6M [2],
3DPW [3], and UP-3D [11]. Each evaluation set is divided into non-overlapping subsets according to the samples’ distances to
the singular human prototype visualized in Fig. 1 (a). The x-axis of each sub-figure is the samples’ distances to the singular
prototype. The y-axis is the models’ decreased prediction errors compared to the baseline model, SPIN [1].

from IMUs, while the shape parameters are obtained through
3D scanning. To enable fair comparisons with previous methods,
we only use 3DPW’s test set for evaluation and do not train
our models on it.

UP-3D. UP-3D [11] is composed of selected images from
four 2D pose datasets. An extended SMPLify [73] is first
used to predict the SMPL parameters on those images. Human
annotators are then asked to select the good samples. We only
use UP-3D’s test set for evaluation and do not train our model
on it.

2D Pose Datasets. We leverage several in-the-wild datasets,
including LSP [79], MPII [80] and COCO [81]. We use the

SMPL fitting results provided by SPIN [1] and originally
provided 2D landmark annotations to train our model.

B. Design of Prototypical Memory

We use SPIN [1], which only adopts a single prototype,
to serve as the baseline. Apart from reporting results on
the overall evaluation set, we also split the evaluation set
of Human3.6M [2], 3DPW [3] and UP-3D [11] into un-
overlapping subsets, according to samples’ distances to the
singular prototype depicted in Fig. 1 (a) and report models’
reconstruction errors (MPVPE) on each subset.
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TABLE III: Comparison with SOTA on whole evaluation sets. We compare the proposed PM-Net with previous state-of-the-art
methods on several widely used dataset including Human3.6M [2], 3DPW [3], UP-3D [11], and MPI-INF-3DHP [10]. All
metrics use millimeters (mm) as the unit and are the lower the better. We use MPVPE, MPJPE, and PA-MPJPE as the evaluation
metrics. We mark the methods that use UP-3D in training with ∗.

Dataset & Metrics → Human3.6M [2] 3DPW [3] UP-3D [11] MPI-INF-3DHP [10]
Methods ↓ MPVPE MPJPE PA-MPJPE MPVPE MPJPE PA-MPJPE MPVPE MPJPE PA-MPJPE
Pavlakos et al [53]∗ - - 75.9 - - - 117.7 - -
CMR∗ [7] 87.1 71.9 50.1 144.2 127.6 74.6 96.2 - -
DecoMR∗ [4] 78.6 59.6 39.1 141.4 126.6 73.7 93.4 - -
HMR [5] - - 56.8 - - 81.3 - 124.2 89.8
DenseRac [54] - - 48.0 - - - - 114.2 83.5
SPIN [1] 78.8 62.5 41.1 117.8 98.3 60.2 119.3 105.2 67.5
HKMR [55] - 60.0 - - - - - - -
I2L-MeshNet [35] - 55.7 41.7 - 95.4 58.6 - - -
Pose2Mesh [38] - 67.9 49.9 - 91.4 60.1 - - -
Ours 73.6 59.6 40.6 114.6 94.6 58.4 112.6 97.0 62.8

Fig. 6: Qualitative comparison. We qualitatively compare the PM-Net with previous state-of-the-art method, SPIN [1].

TABLE IV: Comparison with SOTA on tail classes. We
compare PM-Net with several state-of-the-art methods on tail
classes on Human3.6M [2], 3DPW [3] and, UP-3D [11]. “T-
G%” means to only evaluate the samples with the largest G%
distances to the singular prototype ( i.e. tail classes). The
evaluation metric is MPVPE. We mark the methods that use
UP-3D in training with ∗.

Dataset Human3.6M [2] 3DPW [3] UP-3D [11]
Methods T-5% T-10% T-5% T-10% T-10% T-20%
CMR∗ [7] 92.5 97.3 209.9 194.3 170.4 149.2
DecoMR∗ [4] 84.9 88.2 184.3 175.1 162.0 142.5
SPIN [1] 89.0 88.8 130.0 130.6 184.2 167.9
Ours 80.0 81.1 124.9 126.4 172.1 158.6

In our experiments, we evaluate four types of prototypical
memory, including Naive K-Means, Random Center, 3DH
K-Means, and P3DH K-Means. “Naive K-Means” means
directly applying the original K-Means algorithm on the SMPL
parameters (pose parameters and shape parameters). “Random
Center” uses initial centers, which are randomly selected from
the samples, as the final cluster centers. “3DH K-Means” refers
to the P3DH K-Means without applying part-aware weighting.
For all cluster methods, the numbers of prototypes are set to
be 50 for Human3.6M [2] and UP-3D [11]. For 3DPW [3], the
number of prototypes is set to be 10 for all cluster methods.

Fig. 7: Failure cases. Typical failure cases include occlusion,
depth ambiguities, multiple person interaction and challenging
backgrounds.

Part-aware weighting is not applicable for “Naive K-Means”,
“3DH K-Means”, and the process of obtaining cluster centers
of “Random Center”. Part-aware weighting with limb weight
5 is adopted in the sample assignment process of “Random
Center”. Experimental results show that these settings can lead
to the best performances for all four cluster methods. Please
refer to Sec. IV-D for detailed discussions on the influences of
number of prototypes and limb weights. These four different
models share the same pipeline depicted in Fig. 2. The only
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differences are how the prototypical memories are built and
how samples are assigned to the corresponding prototypes.

The evaluation results are shown in Fig. 5. The x-axis
of each sub-figure is the samples’ distances to the singular
prototype depicted in Fig. 1 (a). The y-axis is the models’
error reduction (in terms of MPVPE) compared to the baseline
model (SPIN [1]). We also list evaluation results on the whole
evaluation sets in Tab. II. It is revealed that P3DH K-Means
achieves the best performance on nearly all the subsets of
all the three datasets, especially on tail classes that are far
from the singular human prototype. 3DH K-Means performs
better than Random Center, proving that performing clustering
to get better sample assignment is beneficial. Furthermore, it
is worth noting that directly performing Naive K-Means on
SMPL parameters is not effective. It is not even comparable to
the Random Center. The experimental results demonstrate the
significance of performing the 3D human-specific clustering.

C. Main Results

Comparison with state-of-the-art methods. In this subsec-
tion, we compare our model with previous state-of-the-art
methods. For methods with code released, we use their original
code and models to obtain the evaluation results that are not
reported in the original papers. For other methods, we report
the original results listed in their papers. We report evaluation
results on both the whole evaluation sets and tail classes only.
The results are listed in Tab. III for the whole dataset evaluation
and Tab. IV for tail class evaluation, separately. In Tab. IV,
“T-G%” means to only evaluate samples with the largest G%
distances to the singular prototype ( i.e. tail classes). The
results in Tab. III show that our model achieves comparable
performances with previous state-of-the-art methods on the
whole evaluation sets. Furthermore, results in Tab. IV show
that our model achieves better results on tail classes. These
experimental results show that the proposed PM-Net effectively
improves the models’ performances on challenging tail classes
while achieving comparable or better performances on the
samples with common poses. We further show qualitative
results in Fig. 6 to compare with the baseline model (SPIN [1]).
The results show that our model can generate more precise
results on challenging samples with rare poses such as squatting
on the ground or uncommon views such as head upside down.
Qualitative Results. We show several qualitative results in
Fig. 8. It is demonstrated that the proposed PM-Net can
effectively select the matched prototypes for the input images
and use them as the foundation to generate precise predictions.
Failure Cases. We show several typical failure cases in Fig 7.
As the images demonstrate, the model tends to fail when
there are severe occlusions, ordinal depth ambiguities, multiple
person interactions, and challenging backgrounds.

D. Further Analysis

In this subsection, we evaluate two hyperparameters of PM-
Net that influence the models’ performances. 1) The number
of prototypes. 2) The weight of limbs in performing part-aware
weighting. The experiments are conducted on the evaluation

set of Human3.6M [2], 3DPW [3] UP-3D [11], and MPI-INF-
3DHP [10]. We evaluate the models’ performances on the whole
evaluation sets and the challenging subsets with rare poses.
We evaluate MPI-INF-3DHP using MPJPE and adopt MPVPE
for other datasets. The models reported in this subsection all
leverage P3DH K-Means to build the prototypical memory.
The evaluation results are listed in Tab. V.
Influence of the Number of Prototypes. We first study the
influence of the number of prototypes (denoted as  ). In our
experiments,  ranges from 5 to 1000. The results are listed in
the top half of Tab. V. For Human3.6M [2] and UP-3D [11],
the highest performances are achieved when  equals to 50.
For 3DPW [3] and MPI-INF-3DHP [10], 10 prototypes achieve
the best results. When  is too small, the capacity of prototype
memory is not sufficient to provide the best matching prototype
for each data sample. When  is too large, the data samples
assigned to each prototype become insufficient to train the
conditional regressor.
Influence of the Limb Weights. We next study the influence
of the limb weights in performing part-aware clustering. The
number of prototypes are set as the optimal value for each
dataset, i.e. 50 for Human3.6M and UP-3D while 10 for 3DPW
and MPI-INF-3DHP. We also do experiments to examine the
influence of weights of other body parts. It turns out the models’
performances only differ slightly. Therefore, we only focus on
the influence of limb weights in this subsection. The weights
of other body parts are set to be values shown in Fig. 3. In
our experiments, the limb weights range from 1.0 to 10.0. The
results are listed in the bottom half of Tab. V. It is revealed
that weight 5.0 achieves the best performances for all datasets.
When the weight of limbs is smaller than the optimal value, the
vertices of limbs are not assigned enough importance. When
it is larger than the optimal value, paying too much attention
to the limbs affects the learning of other parts.

V. CONCLUSION

In this paper, we propose the Prototypical Memory Net-
work (PM-Net) to mitigate current single-image 3D human
reconstruction models’ suboptimal performances on challenging
samples with rare poses or viewpoints. The key of the proposed
method is a prototypical memory that learns and stores a
set of 3D human prototypes that can capture compact local
distributions to represent both common and rare poses. It lifts
the burden from the parameter regressor in coping with diverse
poses and converts the parameter regression process to start
from a local compact distribution, which facilitates the model’s
convergence. While we mainly focus on the task of 3D human
reconstruction in this paper, the notion of Prototypical Memory
can be extended to other visual tasks that need to handle data
with multiple modes.
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TABLE V: Influence of the number of clusters and the weights of limb. Experimental results of models using the different
numbers of prototypes and limb weights. The models are evaluated on the whole evaluation sets (“Full”) and the subsets of tail
classes (Tail-G%) of Human3.6M [2], 3DPW [3], UP-3D [11] and MPI-INF-3DHP [10]. “Tail-G%” means to only evaluate the
samples with the largest G% distances to the singular prototype. We use MPJPE to evaluate MPI-INF-3DHP [10] and MPVPE
for other datasets.

Dataset & Metrics → Human3.6M [2] (MPVPE) 3DPW [3] (MPVPE) UP-3D [11] (MPVPE) MPI-INF-3DHP [10] (MPVPE)
Methods ↓ Full Tail-5% Tail-10% Full Tail-5% Tail-10% Full Tail-10% Tail-20% Full

Influence of Number of Clusters
5 75.9 85.7 86.9 115.4 130.4 132.1 112.6 178.7 165.0 97.6
10 74.9 81.1 81.7 114.6 124.9 126.4 112.6 174.9 159.8 97.0
50 73.6 80.0 81.1 115.2 133.3 130.9 112.6 172.1 158.6 98.2
100 76.4 80.9 83.1 115.1 131.2 130.4 114.4 174.0 160.0 98.4
500 74.1 86.5 86.5 114.5 136.9 133.1 114.4 185.8 165.2 98.6
1000 74.8 86.0 86.3 116.4 134.4 134.8 115.2 179.6 163.1 98.7

Influence of Weights of Limb
1.0 75.5 84.1 83.4 114.4 134.2 132.0 113.0 177.0 160.7 97.9
3.0 76.6 85.7 86.9 114.8 134.9 132.1 113.7 177.0 160.1 97.9
5.0 73.6 80.0 81.1 114.6 124.9 126.4 112.6 172.1 158.6 97.0
7.0 75.5 88.1 88.4 115.8 137.7 135.4 113.5 180.7 162.8 98.8
10.0 73.6 80.7 82.0 115.7 130.3 128.6 112.8 178.3 161.2 97.3
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Fig. 8: Qualitative Results. Qualitative results of PM-Net and P3DH K-Means. The images are selected from Human3.6M [2],
3DPW [3] and UP-3D [11]. For each selected sample, we show the selected prototype, input images and PM-Net’s prediction.
Each prototype is rendered from original view, frontal view and side view.
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