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Table 1: Weights and step size used in IHMR-OPT. γ is the
step size in optimizing the parameters. Objectives including Fcol
etc. are defined in Equ.(10) of the main paper.

Param ρ̂ ↓ γ Fcol F2D F3D Fτ Freg Ff
τ̂ 1e−4 1e−1 1e+1 1e+3 1e+3 1e−1 0.0

φ̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 0.0

θ̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 1e+5

β̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 0.0

1. Implementation Details
In this section, we introduce the implementation details

of IHMR. We first introduce data preprocessing. Then we
introduce the architecture and training details of the base-
line CNN model used in stage-I. After that, we introduce
the design details of the optimization. In the end, we intro-
duce the architecture and training details of the MLP-based
implementation.

1.1. Data Preprocessing

We tightly crop the input images surrounding the bound-
ing boxes of the interacting hands. The hand bounding
boxes are obtained from the 2D keypoint annotations. For
InterHand2.6M dataset [7], we assume the known of hand
types, i.e. single hand (left or right) or interacting hands.
To increase the model’s generalization ability to in-the-wild
scenarios, where no such labels are provided, we follow the
practice of InterNet [7] to additionally predict the hand type
(left, right, or interacting) from input images. The trained
model achieved 96% prediction accuracy on the whole test
set of InterHand2.6M.

1.2. Baseline CNN Model

The input images are cropped, padded, and resized to
224 × 224. The encoder is a ResNet-50 [3]. The param-
eter prediction head is composed of three fully connected
layers whose output dimensions are 1024, 1024, and 122.
The 122 dimensions are composed of camera parameters
(π ∈ R3), shape parameters (β = (βl,βr) ∈ R20), hand

orientation (φ = (φl,φr) ∈ R6) finger pose parameters
(θ = (θl,θr) ∈ R90), and right-to-left-hand relative trans-
lation (τ ∈ R3). The joint head follows the design as In-
terNet [7]. The whole framework, including the encoder,
the parameter prediction head, and the joint head is trained
end-to-end using Adam optimizer [4] with a learning rate
1e−3. The whole model converges after 20 epochs.

1.3. Optimization-based Implementation

The optimization-based method uses Adam opti-
mizer [4] to directly update the estimated parameters ρ̂ ∈
{τ̂ , φ̂, θ̂, β̂}. When refining each parameter set, we use
different step size γ and different weights for each objec-
tive listed in Equ.(8) and of the main paper. The values of
step size and objective weights are listed in Tab. 1. We set
smaller objective weights and step sizes in optimizing right-
to-left-hand relative translation τ̂ . Otherwise, the optimiza-
tion tends to unreasonably increase the overall distances be-
tween collided hands and thus generate worse results.

1.4. MLP-based Implementation

In the MLP-based implementation, each refinement
stage is composed of a Multilayer Perceptron with four fully
connected layers, whose output dimensions are 512, 256,
128, and K, where K is the dimensions of the correspond-
ing parameters. The dimensions for each parameter are 3
for hand translation τ̂ , 6 for hand orientation φ̂, 20 for shape
parameters β̂ and 90 for finger poses θ̄. The training set of
these MLPs are composed of samples with closely interact-
ing hands, following the same selecting criteria of “IH26M-
Inter-Close“ defined in Sec.4.1 of the main paper. We use
the IHMR-OPT to obtain pseudo-ground-truth MANO pa-
rameters for train samples without MANO annotations. The
loss weights for training the MLPs are the same as Equ.(5)
of the main paper. Each MLP is trained for 2 epochs with
the learning rate set as 1e−4. The optimizer is Adam [4].

1.5. HybrIK Implementation

To fill the performance gap between InterNet [7], we
adopt a strong baseline following HybrIK [5]. We use the



Table 2: Comparison with SOTA methods on InterHand2.6M using Vertex-Based Method.. We additionally evaluate on subsets of
InterHand2.6M [7] using vertex-based metrics MPVPE and I-MPVPE. AVE-P and MAX-P are adopted to estimate the collision status of
the generated interacting hands.

Dataset & Metrics→ IH26M IH26M-Inter IH26M-Inter-Close
Methods ↓ MPJPE / MPVPE ↓ MPJPE / MPVPE ↓ I-MPJPE / I-MPVPE ↓ AVE-P / MAX-P ↓ MPJPE / MPVPE ↓ I-MPJPE / I-MPVPE ↓ AVE-P / MAX-P ↓
Bouk et al. [1] 21.96 / 18.88 22.55 / 18.86 - - 21.20 / 18.81 - -
Pose2Mesh [2] 21.76 / 18.61 22.73 / 18.91 - - 20.82 / 18.37 - -
BiHand [9] 19.90 / 17.17 21.18 / 17.32 - - 19.80 / 17.47 - -
IHMR-Baseline 21.67 / 17.54 22.60 / 17.62 24.38 / 25.08 0.45 / 9.98 21.24 / 17.56 18.25 / 18.60 0.84 / 14.40
IHMR-MLP 22.79 / 18.16 23.37 / 17.82 21.26 / 21.85 0.33 / 8.03 21.55 / 17.58 16.60 / 16.82 0.68 / 12.67
IHMR-OPT 19.04 / 16.94 24.09 / 18.82 16.82 / 17.23 0.13 / 3.75 19.04 / 16.94 15.40 / 15.33 0.33 / 7.30
IHMR-Baseline∗ 17.05 / 17.18 17.54 / 16.71 14.44 / 12.45 0.29 / 5.76 16.91 / 16.53 13.16 / 11.47 0.69 / 10.72
IHMR-MLP∗ 15.68 / 14.57 16.45 / 14.69 13.64 / 11.81 0.26 / 5.34 15.76 / 14.56 12.46 / 10.77 0.61 / 10.07
IHMR-OPT∗ 15.47 / 17.17 16.52 / 16.44 13.49 / 13.01 0.23 / 4.48 15.32 / 14.73 11.90 / 11.23 0.34 / 7.48

Table 3: Role of different optimization objectives. We study the
role of three objectives used in the optimization-based factorized
refinement, namely 3D objectives F3D , 2D objectives F2D and
objective on hand translation Fτ .

F2D F3D Fτ I-MPJPE ↓ AVE-P ↓
- - - 20.29 0.70
3 18.99 0.14

3 17.07 0.22
3 36.76 0.01

3 3 16.06 0.27
3 3 17.89 0.12

3 3 16.99 0.21
3 3 3 16.94 0.20

Table 4: Influence of the quality of pseudo-ground-truth 3D
joints. We add noise to ground-truth 3D joints and use these joints
to serve as the pseudo 3D joints, namely J̇3D . For still joints, we
still use the original pseduo-ground-truth 2D joints, J̇2D .

STD of Noise (mm) ↓ I-MPJPE ↓ AVE-P ↓
OPT MLP OPT MLP

0 15.13 17.91 0.183 0.525
10 15.27 18.16 0.152 0.515
20 15.56 18.37 0.170 0.503
30 16.10 18.96 0.178 0.527
40 16.72 19.14 0.181 0.495

estimated 3D joints J̇3D from the joint head of Stage-I. To
be specific, the relative right-to-left-hand translation τ̂ is di-
rectly set as the subtraction of predicted left wrist joints by
the right one. The global hand orientation φ̂ is calculated
using the locations of wrists and the five palm joints through
Singular Value Decomposition (SVD). The finger poses θ̂
are calculated in the standard way of HybrIK. Please be
noted that finger rotations are only composed of swing rota-
tions. Therefore, the finger rotations can be directly solved
from finger joint locations. In the last, we use the origi-
nal shape parameters β̂ predicted from the baseline CNN
model of Stage-I. We suggest to read the original paper of
HybrIK [5] to have a better understanding of how HybrIK
is adopted in our scenario.

2. More Quantitative Results.
Part of the training and testing data have pseudo-ground-

truth MANO [8] parameters obtained from NeuralAn-
not [6]. The number of samples with pseudo GT MANO
annotations are 240K, 65K, 12K, and 4.5K for all four sub-
sets. For samples with pseduo GT MANO annotations, We
further calculate Mean Per Vertex Position Error (MPVPE)
and I-MPVPE to reveal the quality of estimated joint rota-
tions and shapes. They follow a similar definition as MPJPE
and I-MPJPE. The results are included in Tab. 2. The con-
clusion we draw from Tab. 2 is similar to the conclusion
we draw from Tab.1 of the main paper. The baseline mod-
els have similar performances. On the most challenging
IH26M-Inter-Close test set, IHMR-OPT reduces the AVE-
P by 60.7% while improving the accuracy of interacting
pose estimation and 3D hand reconstruction by 14.3% and
16.0%. On the other hand, IHMR-MLP can reduce the col-
lision, 3D finger poses error and 3D hand reconstruction
error by 23.5%, 9.0%, and 9.7%.

3. More Ablation Studies
Following the same practice of the main paper, models in

this subsection are evaluated on IH26M-Close-Inter, using
I-MPJPE and AVE-P as the metrics. More ablation studies
are included in the supplemental.

3.1. Influence of Different Optimization Objectives.

In this subsection, we study the role of several objectives
used in the optimization implementation of the factorized
refinement. The studied objectives include the 2D objective
F2D, the 3D objective F3D and the translation objective
Fτ . The results are listed in Tab. 3. When 2D or 3D joint
objectives are adopted, both the 3D joint estimation error
and collision status can be reduced. When there is only the
translation objective been adopted, although the collisions
are almost totally removed, the joint estimation is ruined.
In general, adopting all three objectives can lead to be best
result with both good joint pose estimation and less collision
status.



3.2. Influence of Joint Quality.

To evaluate the convergence of the proposed factor-
ized refinement, we conduct experiments in which pseudo-
ground-truth 3D joints J̇3D are replaced with ground-truth
3D joints with noise. The noise is sampled from Gaussian
distribution with 0 mm mean and standard deviation rang-
ing from 0 mm to 40 mm. For 2D joints, we still use the
original pseudo-ground-truth 2D joints J̇2D obtained from
the joint head. The results are listed in Tab. It is revealed
that: (1) The proposed factorized refinement is robust to the
noise. When the standard deviation of the added noise is in-
creased to 40 mm, IHMR-OPT and IHMR-IHMR can still
decrease the 3D joint estimation error by 17.6% and 5.7%.
(2) The accuracy of 3D joint estimation is in proportion to
the preciseness of the pseudo ground-truth 3D joints J̇3D.
(3) The effectiveness of collision removal has less correla-
tion with the quality of J̇3D.

4. More Qualitative Results
In this section, we show more qualitative results, in-

cluding qualitative comparison between IHMR-MLP and
IHMR-OPT, comparison between IHMR-MLP between
single hand baseline, and quanlitative results demonstrat-
ing the effectiveness of finger regularizationFf , and typical
failure cases.

4.1. Comparison between Optimization and MLP

We show quanlitative comparison between IHMR-OPT
and IHMR-MLP in Fig. 1. It is revealed that the
optimization-based implementation can produce better 3D
reconstructed hands with more precise joint estimation and
fewer collisions.

4.2. Compare with Single-hand Methods

In this subsection, we qualitatively compare IHMRwith
the single-hand baseline, i.e. Bouk et al. [1]. The results
are shown in Fig. 2. It is revealed that the proposed IHMR
can generate more precise interacting 3D hands than single-
hand methods, which can only treat interacting hands as iso-
lated single hands.

4.3. Influence of Finger Regularization

In this subsection, we show the influence of applying fin-
ger regularization Ff defined in Equ.(12) of the main pa-
per. Several examples are listed in Fig. 3. It is revealed that
without applying Ff , optimization methods tend to gener-
ate twisted fingers as marked by red circles in Fig. 3.

4.4. Failure Cases.

We show several typical failure cases in Fig. 4. As the
results show, typical failure cases are caused by challenging
poses and occlusions.
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Figure 1: Qualitative Comparison between IHMR-MLP and IHMR-OPT. We qualitatively compare between IHMR-MLP and IHMR-
OPT. Collided regions are marked with red circles.
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Figure 2: Compare with SOTA single-hand method. In this figure, we qualitatively compare with single-hand baseline, i.e. Bouk [1].
From left to right are input images, predicted right hands from the baseline, predicted left hands from the baseline and predicted interacting
hands from IHMR-MLP. Imprecise hand poses or finger poses generated by the single-hand method are marked with red arrows.
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Figure 3: Role of Ff . In this figure, we demonstrate the role
of Ff plays in optimization. From left to right are input images,
optimized results without using Ff , optimized results with using
Ff . Twisted fingers generated by optimization without using fin-
ger regularization Ff are marked with red circles.
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Figure 4: Typical Failure Cases. Typical failure cases of IHM-
Rare caused by challenging finger poses and collusions.


