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Abstract
3D interacting hand reconstruction is essential to facil-

itate human-machine interaction and human behaviors un-
derstanding. Previous works in this field either rely on aux-
iliary inputs such as depth images or they can only han-
dle a single hand if monocular single RGB images are
used. Single-hand methods tend to generate collided hand
meshes, when applied to closely interacting hands, since
they cannot model the interactions between two hands ex-
plicitly. In this paper, we make the first attempt to recon-
struct 3D interacting hands from monocular single RGB
images. Our method can generate 3D hand meshes with
both precise 3D poses and minimal collisions. This is made
possible via a two-stage framework. Specifically, the first
stage adopts a convolutional neural network to generate
coarse predictions that tolerate collisions but encourage
pose-accurate hand meshes. The second stage progressively
ameliorates the collisions through a series of factorized re-
finements while retaining the preciseness of 3D poses. We
carefully investigate potential implementations for the fac-
torized refinement, considering the trade-off between effi-
ciency and accuracy. Extensive quantitative and qualita-
tive results on large-scale datasets such as InterHand2.6M
demonstrate the effectiveness of the proposed approach.

1. Introduction
Capturing 3D interacting hand motion from monocular

single RGB images can facilitate numerous downstream
tasks including AR/VR [8, 46] and social signal understand-
ing [12, 25]. Previous works on motion capture of two
interacting hands [2, 24, 27, 38, 42, 45] mainly rely on
depth images, multi-view images or image sequences as in-
put. These methods cannot be easily applied to monocular
RGB images. Recently, there is a surge of interest to cap-
ture 3D single hand motion from monocular RGB images
[1, 3, 7, 17, 47, 51]. For example, MANO [29], a 3D hand
mesh model parameterized by pose parameters and shape
parameters, is proposed to represent 3D hands. Deep neu-
ral networks are leveraged to regress the model parameters
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Figure 1: Interacting 3D Hands Reconstruction. (a) Input RGB
images with closely interacting hands. (b) A baseline model fol-
lows the single-hand based method [3] to reconstruct two hands.
The method tends to generate collided 3D hands. Collided re-
gions are marked with red circles. (c) Results obtained by directly
adding a collision-aware loss [11] in training. (d) Results produced
by the proposed method with mitigated collisions.

or coordinates of the mesh vertices. Although these meth-
ods achieve good performance in single-hand scenarios, it
remains challenging to estimate interacting hands given just
monocular RGB images. Typical results of a baseline model
adapted from the single-hand methods [3] are shown in
Fig. 1 (b). One major obstacle is that these methods do not
explicitly model the relationship between two closely inter-
acting hands, and therefore, inevitably generate unnatural
results with hands colliding with each other.

An intuitive idea to diminish collisions is by apply-
ing collision-aware losses, inspired by previous works that
model body-centric interactions [9, 11, 50]. These losses
are useful to increase the overall distances between inter-
acting subjects, the main cause of collisions found across
interacting bodies. Collisions observed between interacting
hands are attributed to multiple factors, such as imprecise



hand shapes or finger poses. Simply adding collision losses
in model training inevitably makes a model converge to a
trivial solution that merely pulls two hands away. While
collisions are dismissed, the accuracy of 3D hand estima-
tion is also compromised.. We illustrate several examples
in Fig. 1 (c). A similar phenomenon has also been observed
by previous body-motion studies, e.g., Jiang et al. [11].

In this work, we introduce a two-stage framework that
estimates 3D hand poses and shapes of two closely interact-
ing hands with precise 3D poses and little collisions. In the
first stage, we adapt a convolutional neural network (CNN)
with a similar architecture as single hand methods [3, 51] to
predict initial hand meshes of two hands. Specifically, the
CNN takes a single RGB image as input and regresses two-
hand parameters as its output. In this stage, collision-aware
losses are not adopted – we deliberately allow the model to
produce collided output but focus on generating acceptable
and accurate pose results. These initial predictions provide
good initialization for the second stage. Several examples
are shown in Fig. 1 (b). From the coarse results obtained in
the first stage, we observe that collisions of different sam-
ples are caused by distinct factors. For example, the col-
lisions shown in the first row of Fig. 1 (b) are caused by
inaccurate hand shape estimations while imprecise relative
hand location causes the collisions in the second row. In the
third row, collisions are mainly caused by the imperfect fin-
ger pose estimation. An effective way to improve each col-
lided initial prediction is to focus on its specific root cause
of error instead of jointly optimizing for all components.

To this end, we present a novel factorized refinement
strategy in the second stage to ameliorate the collision is-
sue. We decompose the causing factor of error and cor-
rect one factor at a time. In this work, we consider dif-
ferent approaches to perform the factorized refinement, i.e.,
through the conventional gradient-descent based optimiza-
tion and a more effective alternative that applies MLP as a
proxy for optimization. Using the proposed factorized re-
finement strategy, the collision issues can be substantially
mitigated. We show several recovered 3D hand meshes us-
ing the proposed two-stage framework in Fig. 1 (d). Com-
pared with baseline results shown in Fig. 1 (b) or results
from a model trained with naively applying collision-aware
losses, as shown in Fig. 1 (c), our method can generate pre-
cise 3D hand meshes with modest collisions.

Our contributions can be summarized as follows: 1)
We introduce the first 3D interacting hand motion capture
framework that only needs monocular single RGB images
as inputs, without any other auxiliary sensory inputs. 2)
We comprehensively investigate the collision issue that ex-
ists in interacting hands motion capture, and subsequently
design a simple yet effective strategy to resolve the prob-
lem. 3) We present two alternatives for factorized refine-
ment that carefully consider the trade-off in accuracy and

speed. We perform extensive evaluations on the proposed
method on large-scale interacting hand datasets, e.g., In-
terHand2.6M [22]. In comparison to existing methods, the
proposed approach achieves 71.4% reduction in the gener-
ated collisions and improves pose estimation by 16.5%.

2. Related Work
3D Single Hand Pose Estimation. Early studies [26,
35, 36, 40] take depth images as input and use optimiza-
tion or discriminative methods to predict 3D joint loca-
tions. Subsequent works [6, 20, 41, 44, 49] replace the
time-consuming optimization with deep neural networks.
Follow-up works [4, 23, 32, 34, 48, 52] start to take RGB
images as inputs and deploy CNN to estimate the 3D hand
poses. Inspired by recent progress in 3D body mesh recov-
ery [13, 15, 16, 30, 31, 32], more recent approaches [1, 3,
7, 17, 47, 51] try to estimate 3D single-hand meshes from
monocular RGB images. Most works [1, 3, 47, 51] use a
CNN to predict the parameters of the MANO model [29].
There are also other works directly regress the 3D vertices
of the hand. Ge et al. [7] and Pose2Mesh [5] use graph neu-
ral networks. Kulon et al. [17] use mesh convolution. Lin et
al. [19] use Transformers [43] as the backbone. Although
these methods perform well on single hands, it is non-trivial
to adapt them to cope with interacting hands. Single-hand
methods do not explicitly model the interrelationship be-
tween hands and thus will inevitably generate erroneous
hand meshes, e.g. hands colliding with each other.
3D Interacting Hand Pose Estimation. Oikonomidis et
al. [27] firstly use Particle Swarm Optimization (PSO) to
fit the 3D interacting hand motion that aligns best with the
RGB-D inputs. Ballan et al. [2] solve this problem by es-
timating both finger-salient points and overall hand poses.
They leverage the multi-view RGB sequences as the in-
put. Tzionas et al. [42] extend the idea of discriminative
salient points by introducing physics simulation. Taylor et
al. [38] introduce a new implicit hand model to facilitate
simultaneous optimization over both hand poses and hand
surfaces. Smith et al. [33] use an elastic volume deforma-
tion and a collision response model to recover dense hand
surface from multi-view sequences. More recent works of
Muller et al. [24] and Wang et al. [45] share the similar
pipeline. Specifically, deep neural networks are firstly used
to predict the dense correspondence between pixels and
MANO [29] surface. MANO parameters are then obtained
by applying optimization to the obtained intermediate pre-
dictions. Muller et al. [24] use single-view depth sequences
while Wang et al. [45] use single-view RGB sequence as
input. Limited by the different input modality, these spe-
cialized methods cannot be directly applied to single RGB
images. InterNet [22], although can cope with monocular
RGB images, only produces 3D hand joint positions, which
only have limited applications. To fill the gap, we propose a
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Figure 2: Framework overview. The proposed IHMR takes monocular RGB images as input and generates the 3D meshes represented
in MANO [29]. The framework has two stages. The first stage adopts a convolutional neural network composed of an encoder, a MANO
parameter prediction head, and a 2D/3D joint prediction head. It outputs the initial predicted parameters Θ̂ and predicted 2D and 3D joints,
namely J̇2D and J̇3D . By taking initial predictions as input, the second stage performs factorized refinement to gradually remove the
collisions from the first stage and produce refined predictions. The detailed architecture of each refinement module is depicted in Fig. 3.

new framework to simultaneously estimate both poses and
shapes of interacting hands from single RGB images.
Collision Detection across Interacting Hands. Oikono-
midis et al. [27] considers adjacent fingers interpenetrate
by calculating abduction-adduction difference. Ballan et
al. [2] and Tzionas et al. [42] use bounding volume hier-
archies (BVH) [39] to detect each collided faces. Muller et
al. [24] and Wang et al. [45] use 3D Gaussians to model
interpenetrate between fingers and palms. Smith et al. [33]
does not only detect collided meshes but also adopt elastic-
ity physical models to simulate the soft tissue of the hand
skins. In this paper, we use a modified Signed Distance
Function (SDF) [9, 11] which can model the penetration re-
lations more precisely than finger-level [27], BVH [2, 42]
or 3D Gaussians [24, 45]. Besides, we propose to use the
factorized refinement to effectively diminish the collision
while retaining the accuracy of the estimated finger poses.

3. Methodology

To reconstruct closely interacting 3D hands from monoc-
ular single RGB images, we propose a two-stage frame-
work called Interacting Hand Mesh Recovery (IHMR). As
depicted in Fig. 2, in the first stage, a CNN similar to a pre-
vious single-hand model [3] is adapted to generate initial
predictions of two hands from input images. No collision-
aware losses are applied in this stage so that the model can
focus on generating accurate hand poses. A factorized re-
finement strategy is introduced in the second stage to gradu-
ally diminish the collisions observed in the first stage while
retaining the accuracy of the estimated 3D hands. We pro-
vide two different implementations for the proposed strat-
egy, namely a optimization-based method with better accu-
racy and a neural-network based method with higher speed.
Next, we first introduce the 3D hand model used in this pa-
per. Then we discuss the design of the CNN baseline model

and the factorized refinement strategy. Lastly, we present
the details of two different implementations of the latter.

3.1. 3D Hand Model

We use MANO [29], a 3D hand mesh model parameter-
ized by the shape and pose parameters. The shape param-
eters βh ∈ R10 control the overall shape of hands. The
pose parameters are composed of two parts. The first part
φh ∈ R3 controls the global hand orientation. The second
part θh ∈ R3×15 represents the 3D rotations of each finger
joint, relative to their parents on the predefined kinematics
skeleton. Hand orientation and finger poses are both rep-
resented in axis-angle format. Given shape parameters βh,
hand orientationφh and finger poses θh, MANO modelWh

calculates the 3D vertices V h ∈ R3×778 as:

V h = Wh(βh,φh,θh). (1)

The original MANO model only supports single hands.
We extend it to support interacting hand scenarios by us-
ing two sets of parameters, namely (βl,φl,θl) for left
hands and (βr,φr,θr) for right hands. Another parame-
ter τ ∈ R3 is added to represent the relative translation
from the right hand to the left one. For simplicity of nota-
tion, we stack the same parameters of left and right hands
together as β = (βl,βr), φ = (φl,φr), and θ = (θl,θr).
The whole process of obtaining 3D interacting hand vertices
from aforementioned parameters is formulated as:

V = W (β,φ,θ, τ ),

= (Wlh(βl,φl,θl) + τ ,Wrh(βr,φr,θr)),
(2)

where Wlh and Wrh represent MANO models for left and
right hands. V = (V l,V r) is built from stacking left and
right hand vertices. 3D joints J3D ∈ R3×42 are obtained
simultaneously in the process of linear blending skin.



3.2. Basic 3D Hand Reconstruction Model

Architecture. The baseline CNN model is composed of an
encoder, a MANO parameter prediction head and a 2D/3D
joint prediction head. Given single images as input, the en-
coder produces the encoded features f , which are then fed
to the parameter prediction head. The parameter prediction
head outputs the estimated parameters Θ̂ = (β̂, φ̂, θ̂, τ̂ ), as
defined in Eq. (2). Besides these parameters, the parameter
head also predicts a set of weak-perspective camera param-
eters π ∈ R3 to project the 3D joints into 2D space. The
camera parameters π = (s, t) is composed of a scale factor
s and 2D translation t ∈ R2. Given camera parameters π,
the 2D joints J2D can be obtained as J2D = sΠ(J3D) + t,
where Π is the orthogonal projection.
3D Losses. To train the baseline model, we adopt a set of
3D losses that include MANO parameter losses and 3D joint
loss. These losses are defined as follows:

LΘh
= ‖β́ − β̂‖22 + ‖R(θ́)−R(θ̂)‖22,

LJ3D = ‖J́3D − Ĵ3D‖22,
Lτ = ‖τ́ − τ̂‖22,

Lreg = ‖β̂l − β̂r‖22,

(3)

where β́, τ́ , θ́, J́3D represent ground-truth MANO shape
parameters, relative hand translation, finger poses and 3D
joints. τ́ is obtained from ground-truth 3D locations of left
and right hand wrists. R is the Rodrigue’s rotation formula,
which converts the finger poses from the axis-angle format
to the rotation-matrix format. We follow this practice of
previous works [13] for better numerical stability. Lreg is
used to constrain the shape variation between two hands be-
longing to the same person. We also tried surface-based 3D
losses such as vertex coordinate loss, surface normal and
edge losses used by Pose2Mesh [5], but empeircal results
show that these losses bring no performance gain.
2D Losses. We also adopt a 2D loss defined as:

LJ2D = ‖µ · (J́2D − Ĵ2D)‖1, (4)

where µ is the visibility indicator and J́2D is the ground-
truth 2D joints.
Overall Loss. The overall loss L is defined as follows:

L =λ1LΘh
+ λ2Lτ + λ3LJ3D + λ4Lreg + λ5LJ2D

(5)
In our experiments, the values of these λs are set to be
[10.0, 10.0, 10.0, 0.1, 10.0], respectively.

3.3. Collision-Aware Factorized Refinements

3.3.1 Collision-aware Loss

In this second stage, we adopt the penetration loss used
by previous work [9, 11] to reduce the collisions observed
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Figure 3: Refinement with verification. Given original predic-
tions generated by the baseline CNN model or previous refinement
stages, the refinement module of current stage aims at refining
the corresponding parameters and generating the candidate refine-
ment. Some criteria are used to decide whether to keep the original
predictions before refinement or adopt the refined parameters.

in the first stage. Following their practice, we first use a
modified Signed Distance Field (SDF) for each hand mesh,
which is defined as follows:

ψh(x, y, z) = −min(SDF(x, y, z), 0), (6)

For points (x, y, z) inside the hand meshes, the ψh(x, y, z)
takes positive values, which are in proportion to the points’
distances to the hand surfaces. The values take zero for out-
side points. The SDF is obtained via voxelizing the original
3D hand meshes to 3D grids with dimensionNp×Np×Np.
We compute ψl for left hands and sample the SDF value of
each vertex of right hands, and vice versa. The collision
loss is calculated as follows:

Lcol =
∑
v∈V l

ψr(v) +
∑

v∈V r

ψl(v), (7)

where ψl and ψr are SDF functions of left and right hand
meshes, while V l and V r are left and right hands vertices.

Recall that we do not add the collision loss Lcol in train-
ing the baseline CNN model of the first stage. It is because
adding collision-aware losses in model training will com-
promise the estimated 3D hands, as depicted in Fig. 1 (c).
Besides, even with a rigorous adjustment on the loss weight
of Lcol, we found that the model cannot converge to provide
a balanced output, where pose estimation and collision sta-
tus are both satisfactory. We verify this phenomenon in our
experiments (Fig. 6), in which we list the baseline model’s
performances obtained by setting different loss weights of
Lcol. In view of this, we propose to have factorized refine-
ment as a second stage to refine the outputs generated by
the first-stage CNN model.



3.3.2 Factorized Refinement

We divide the cause factors of inter-hand collisions into
four different parameter sets, namely imprecise right-to-
left-hand translation τ̂ , imprecise hand orientations φ̂, im-
precise hand shapes β̂ and imprecise hand finger poses θ̂.
The goal of factorized refinement is to refine each cause
factor given each collide sample. However, due to the lack
of corresponding annotations or explicit signals, it is chal-
lenging to use prior knowledge to precisely identify the ma-
jor cause factors. Therefore, we adopt stagewise refinement
with verification, as shown in Stage-II of Fig. 2, with each
stage detailed in Fig. 3. The whole process of factorized
refinement is summarized in Algorithm 1.

Given each collided sample, we try to refine all four
parameters in a stage-wise manner, following the order of
ρ̂ ∈ {τ̂ , φ̂, θ̂, β̂}. The order is insignificant as we observed
from our experiments. We denote the initial predictions as
ρ̂, the candidate obtained after the refinement module as ρ̈,
and the refined parameters as ρ̄. In each stage, we first refine
one of the parameter sets, ρ̂, and obtain a candidate param-
eter set ρ̈. Then we check whether the candidate set could
lead to better results, e.g., hand meshes with less collisions
and lower 3D joint errors (detailed in next paragraph). If the
results are improved after verification, we use the candidate
ρ̈ as the final refined parameters ρ̄. Otherwise, we still keep
the original values ρ̂ as the output of this stage. Once we
are done with the refinement of a parameter set we move to
the next stage to refine another set of parameters.

For each refinement stage, we perform verification to
decide if the candidate parameters could lead to a bet-
ter performance. We adopt two criteria, i.e., collision er-
rors Ecol and 3D joint errors E3D. Collision errors can
be calculated as Eq. (7) using the estimated vertices V̂ .
To calculate the 3D joint errors during inference time, we
add another head onto the baseline CNN model to directly
predict the 3D joints J̇3D, and use them as the pseudo-
ground-truth 3D joints to calculate the 3D joint error as
E3D = ‖J̇3D − Ĵ3D‖22. We follow the same architecture of
the InterNet [37] to use 3D heatmaps to build this additional
joint prediction head. More details about the joint head are
included in the supplemental material. We use J̇3D instead
of regressed 3D joints from initial MANO predictions Ĵ3D

because it is revealed by the previous works that 3D joints
predicted in the heatmap format have better accuracy than
the joints regressed from mesh models [18].
Optimization-based Implementation. Our first imple-
mentation of stage-wise refinement uses gradient-descent
based optimization, which updates the parameters by mini-
mizing the following objective function:

Fopt = Fcol + F2D + F3D + Fτ + Freg + Ff , (8)

where Fcol is computed using Eq. (7). The term F2D

is computed in the same way as Eq. (4) by replacing the

Algorithm 1 Factorized Refinement Strategy.

Require: Initial parameters Θ̂ = (β̂, φ̂, θ̂, τ̂ ).
Require: Pseudo-ground-truth 3D Joints J̇3D.
Require: Initialize refined parameters Θ̄ as Θ̂.

1: function OBTAINERROR(Θ, J̇3D)
2: V = W (Θ)
3: J3D = (J · V T )T

4: Ecol = Ψ(V )
5: E3D = ‖J3D − J̇3D‖22
6: return Ecol, E3D
7: end function
8: Ēcol, Ē3D = ObtainError(Θ̄, J̇3D)
9: for ρ̄ in {β̄, φ̄, θ̄, τ̄} do

10: ρ̈ = Refine(ρ̄)
11: Θ̈ = (Θ̄\ρ̄) ∪ {ρ̈}
12: Ëcol, Ë3D = ObtainError(Θ̈, J̇3D)
13: if Ëcol < Ēcol and Ë3D < Ē3D then
14: ρ̄ = ρ̈
15: Ēcol = Ëcol
16: Ē3D = Ë3D
17: end if
18: end for

ground-truth 2D joints J2D with J̇2D, which is also esti-
mated by the additional joint head used to predict J̇3D. The
term Fτ is computed in a similar way as Lτ . The pseudo-
ground-truth right-to-left-hand translation is obtained by
subtracting the 3D left wrist location by the right one. The
3D joint locations are retrieved from J̇3D. The term Freg
is the same as Lreg in Eq. (3).

The last term Ff is used to avoid generating twisted fin-
gers during optimization. We follow previous study [51] to
formulate Ff . Let pa, pb, pc, pd represent joints on the fin-
gers from the tip to the palm. ~Vab = pb − pa represents the
finger vectors. There are two constraints listed as follows:

C1 = (~Vab × ~Vbc) · ~Vcd = 0

C2 = (~Vab × ~Vbc) · (~Vbc × ~Vcd) > 0
(9)

The finger error Ff is defined as:

Ff = ‖C1‖+ min(C2, 0). (10)

Detailed loss weights and learning rate used in each stage
are listed in the supplemental. At the end of each stage,
verification criteria Ecol and E3D are used to select the valid
updated parameters that can improve the performances.
MLP-based Implementation. The optimization-based
method offers a good performance but it runs at a slow
speed (0.9 FPS). In view of this, we provide another im-
plementation of factorized refinement using Multilayer Per-
ceptrons (MLP), which can run in real time (29.6 FPS).



Specifically, a separate MLP is deployed to refine each pa-
rameter set. The input of MLPs is the concatenation of en-
coded features f generated by image encoder E and the
initial parameter predictions (β̂, φ̂, θ̂, τ̂ ). The output is the
candidate parameters ρ̈, which is subjected to the verifica-
tion step discussed earlier. To train MLPs, we build a train
subset consisting of only closely interacting samples. The
training losses include 3D losses defined in Eq. (3), 2D loss
defined in Eq. (4) and collision loss defined in Eq. (7). Sim-
ilar to the optimization-based implementation, criteria in-
cluding Ecol and E3D are adopted during both train and test
phases to filter out the candidate parameters that cannot lead
to improved results. Implementation details of the MLPs
are included in the supplemental material.

4. Experiments

4.1. Experimental Settings

Datasets. We majorly conduct experiments on Inter-
Hand2.6M [22], which provides RGB images with anno-
tated 2D and 3D joints. The dataset also provides pseudo-
ground-truth MANO [29] parameters obtained from Neu-
ralAnnot [21] for part of samples. Follow the practice of the
original paper, we use the 5 FPS version of the released data.
Besides, we neglect the multi-view information and treat all
data as single-view samples. Our models are trained on the
whole train set evaluated on the test set. To focus our evalu-
ation on the interacting hands, we select interacting samples
from the whole test set. Following the same definition as the
original paper, we attribute samples with more than 30 valid
ground-truth 3D joints as “interacting”. Besides the inter-
acting subset, another subset composed of only closely in-
teracting samples is further filtered out. Given each interact-
ing sample, we first calculate the per-joint “inter-distance”,
which is defined as the smallest Euclidean distance from
this joint to the joints belonging to the other hand. Closely
interacting samples are defined as the sample whose average
inter-distance of all valid joints is smaller than 40 mm. We
simplify the names of the original test set, the interacting
subset, and the closely interacting subset as “IH26M-All”,
“IH26M-Inter”, and “IH26M-Inter-Close”. We also train
and evaluate our models on RGB2Hand dataset [45] and
Tzionas dataset [42]. We follow the same practice of Inter-
Net [22] to randomly split the origin Tzionas dataset [42]
into train and test set at a ratio of 9:1 and additionally train
and evaluate our models on the split sets.
Evaluation Metrics. We first adopt a single-hand style
metric, 3D Mean Per Joint Position Error (MPJPE). In cal-
culating MPJPE, the left and right hand joints are sepa-
rately aligned to the ground-truth left and right wrists. We
adopt another interacting-hand style metric I-MPJPE that
synchronically aligns both the left and right hands joints
to the ground-truth joints using Procrustes Analysis. Fol-

lowing the practice of RGB2Hands [45], we only normalize
the scales and translations while leaving the estimated rota-
tions unchanged. Furthermore, we adopt two more metrics
to reveal the collision status of the reconstructed interact-
ing hands. They are Average Penetration Depth (AVE-P)
of each hand vertices penetrating into the other hand, and
Maximum Penetration Depth (MAX-P) of all vertices be-
longing to a pair of hand. In the last, we evaluate samples
with pseudo-ground-truth MANO annotations using Mean
Per Vertex Position Error (MPVPE) and corresponding I-
MPVPE. These results are listed in the supplemental. Units
of the aforementioned metrics are all millimeters (mm).

4.2. Comparison

Comparison on InterHand2.6M. The quantitative results
on InterHand2.6M [22] are listed in Tab. 1. We first com-
pare performances of three single-hand methods (Bouk et
al. [3], Pose2Mesh [5] and BiHand[47]) on test set of Inter-
Hand2.6M using single-hand metric MPJPE. All these three
methods are finetuned on the train set of InterHand2.6M.
As the models’ performances are close, we choose Bouk et
al. [3] as the baseline model to build up IHMR for its sim-
plicity.

Due to the lack of similar works, we majorly compare
the variants of IHMR. They are the baseline CNN model
(IHMR-Baseline), IHMR with factorized refinement imple-
mented in MLP (IHMR-MLP), and IHMR implemented in
optimization (IHMR-OPT). We also test the models’ infer-
ence speed on a single RTX 2080Ti GPU. The results show
that the proposed factorized refinement strategy can effec-
tively diminish the collisions between the interacting hands
while producing more precise 3D poses. On the most chal-
lenging IH26M-Inter-Close, IHMR-OPT reduces the AVE-
P by 71.4% while improving the interacting pose estimation
accuracy by (in terms of I-MPJPE) by 16.5%. On the other
hand, IHMR-MLP can reduce the collision and 3D finger
poses errors by 26% and 10.4%. We believe the perfor-
mance gap between IHMR-MLP and IHMR-OPT is caused
by their inherent differences. Optimization is better at mod-
eling high-frequency information such as per-vertex colli-
sions. On the other hand, IHMR-MLP achieves real-time
performance, which is more suitable for applications such
as live streaming that demand real-time procesing.

Furthermore, we adopt HybrIK [18] as an additional
strong baseline to fill the gap between InterNet [22]. Imple-
mentation details are included in the supplemental. Based
on this strong baseline, we further adopt factorized refine-
ment. The results are listed in the last 4th to 2nd rows
(marked with ∗) of Tab. 1. By following HybrIK, the I-
MPJPE gap between InterNet and IHMR-Baseline∗ is re-
duced from 8.3 mm to 3.5 mm. Furthermore, the proposed
factorized refinement can still effectively increase the ac-
curacy of 3D joints estimation and reduce collisions despite



Table 1: Comparison with SOTA methods on InterHand2.6M [22]. We apply MPJPE and I-MPJPE to evaluate 3D joint estimation
accuracy in the single-hand style and interacting-hand style. AVE-P and MAX-P are adopted to estimate the collision status of the generated
interacting hands. We also test the speed of the variants of IHMR, the unit is frame-per-second (FPS).

Dataset & Metrics→ IH26M IH26M-Inter IH26M-Inter-Close Speed
Methods ↓ MPJPE ↓ MPJPE ↓ I-MPJPE ↓ AVE-P / MAX-P ↓ MPJPE ↓ I-MPJPE ↓ AVE-P / MAX-P ↓ Speed (FPS) ↑
Bouk et al. [3] 27.14 31.46 - - 26.64 - - -
Pose2Mesh [5] 27.10 32.11 - - 25.97 - - -
BiHand [47] 25.10 28.23 - - 24.16 - - -
IHMR-Baseline 25.45 29.70 39.38 0.47 / 10.65 26.30 20.29 0.70 / 14.10 76.8
IHMR-MLP 24.51 28.72 32.75 0.32 / 8.34 24.74 18.18 0.52 / 12.00 29.6
IHMR-OPT 22.88 29.57 23.82 0.09 / 3.15 24.61 16.94 0.20 / 6.23 0.89
IHMR-Baseline∗ 18.52 21.78 20.03 0.27 / 5.53 19.63 15.35 0.64 / 10.35 75.2
IHMR-MLP∗ 17.61 21.23 19.45 0.25 / 5.34 18.60 14.42 0.44 / 9.55 29.6
IHMR-OPT∗ 17.12 20.66 19.05 0.21 / 4.48 17.66 13.56 0.27 / 6.27 0.89
InterNet [22] 14.21 18.04 17.36 - 16.19 11.91 - -

Input Baseline Baseline IHMR-MLP IHMR-MLPInput Baseline Baseline IHMR-OPT IHMR-OPT

Figure 4: Qualitative results on InterHand2.6M [22]. Quanlitative comparison between baseline model adopted from Bouk et al. [3]
and IHMR. Collided regions are marked with red circles.

Table 2: Comparison with RGB2Hands [45] on their test set.
Method RGB2Hands [45] IHMR-MLP IHMR-OPT

I-MPJPE ↓ 20.02 23.41 21.30

the stronger baseline. Note that our method is advantageous
than InterNet in that our reconstructed 3D meshes allow for
more elaborative interactions such as "touching" and "grab-
bing" compared to 3D joints produced by InterNet.

Qualitative results are shown in Fig. 4. It reveals that
IHMR, no matter implemented using the MLP or the opti-
mization, can effectively diminish the collisions caused by
different factors, e.g. relative hand positions (the first row
on the left half) or finger poses (the second row on the right
half). See the supplemental for more qualitative results, in-
cluding the comparison with single-hand methods and the
comparison between IHMR-MLP and IHMR-OPT.
Comparisons on Other Datasets. We quantitatively
compare our methods with RGB2Hands [45] on the
RGB2Hands evaluation set. The results are listed in Tab 2.
RGB2Hands perform slightly better than our methods. We
believe it is due to that RGB2Hands leverage temporal in-
formation while we only use single RGB images as inputs.
For Tzionas dataset [42], we only show qualitative results
in Fig. 5 due to the lack of 3D annotations. We follow the
practice of InterNet [22] to train the model with the mix-

Prediction

Figure 5: Qualitative results on Tzionas dataset [42].

ture of InterHand2.6M data and Tzionas data. These results
demonstrate the IHMR’s generalization ability.

4.3. Ablation Study

Models in this subsection are based on origi-
nal IHMR described in Sec. 3 and evaluated on IH26M-
Close-Inter, using I-MPJPE and AVE-P as the metrics.
More ablation studies are included in the supplemental.



Figure 6: Collision loss in training baseline CNN model. We
apply collision loss Lcol in training the baseline CNN model. Red
markers represent the original model trained without collision loss.

Table 3: Design of factorized refinement. We examine three
variants of the IHMR: without factorization and without verifica-
tion, and optimization from mean hand poses

Models ↓ I-MPJPE ↓ AVE-P ↓
OPT MLP OPT MLP

Full Model 16.94 18.18 0.20 0.52
No Factorization 17.20 18.98 0.22 0.62
No Verification 16.19 26.64 0.25 0.22
OPT Mean Pose 34.74 26.22 0.03 3.67

Adopting Collision Loss in Stage-I. We conduct experi-
ments in which the collision loss Lcol in Eq. (7) is directly
applied in training the baseline CNN model. We adjust the
loss weights of Lcol to range from 0.0 to 1e−4, where 0.0
corresponds to the original baseline model. All models in
this subsection are finetuned from a model trained on Inter-
Hand2.6M without collision losses adopted. The results are
depicted in Fig. 6. It is observed that although using colli-
sion loss in training baseline model can remove most of the
collisions, it corrupts the 3D pose estimation, with the joint
estimation errors increased by 79%. Furthermore, simply
adjusting the loss weight ofLcol cannot lead to better results
with 3D hand pose estimation and collision status both im-
proved. While decreasing loss weights of Lcol can restrain
the performance drop in the joint estimation, the collision
issue becomes severe again. The results justify our design
of not using collision-aware loss in the first stage but intro-
ducing it in the second stage using factorized refinement.
Design of Factorized Refinement. We evaluate three vari-
ants of IHMR. The first one is the framework without
factorization, namely all parameters are refined together.
The second one is performing factorized optimization with-
out verification. The third one optimizes from mean hand

Table 4: Influence of refining different parameters. We evalu-
ate shape parameters β, global hand orientation φ, finger poses θ
and right-to-left-hand relative translation τ . Full factorized refine-
ment with verification is applied in these experiments.

Shape Orientation Finger Translation I-MPJPE ↓ AVE-P ↓
OPT MLP OPT MLP

7 7 7 7 20.29 20.29 0.70 0.70
3 20.14 19.43 0.60 0.72

3 19.18 19.29 0.41 0.64
3 19.28 19.42 0.40 0.71

3 18.67 19.32 0.51 0.67
3 3 19.16 19.43 0.51 0.65
3 3 3 18.38 19.42 0.38 0.63
3 3 3 3 16.94 18.18 0.20 0.52

poses, following the classical optimization methods such as
SMPLify-X [28]. The results are listed in Tab. 3. With-
out verification, both methods fail - the 3D joint errors
of IHMR-MLP increase by 47% and the average penetra-
tion of IHMR-OPT increases by 25% percent. Without
factorization, the average penetration of IHMR-MLP in-
creases by 19%. The gain is less apparent on IHMR-OPT
due to its unique per-sample optimization capability, which
allows IHMR-OPT to achieve optimal results more easily.
Lastly, optimization starting from mean poses produces re-
sults with 3D joint errors 41% larger than IHMR-OPT does,
which justifies the design of our two-stage framework.
Influence of Refining Different Parameters. Studies on
the influence of refining different parameter combinations
are listed in Tab. 4. Solely optimizing shape parameters
provides the least performance gain. Updating finger poses
can reduce the most 3D pose estimation errors, while refin-
ing orientation can diminish the most collisions. Besides,
the performances can be further improved by refining more
than one parameter in the second stage. Starting from the
shape parameters, progressively incorporating orientation,
finger poses, and translation in the whole process can con-
sistently improve the overall performances.

5. Conclusion
We have presented the first monocular single-image

based method for reconstructing 3D interacting hands with
both accurate finger poses and moderate inter-collisions.
To achieve this, we have proposed a novel factorized re-
finement that can be implemented in either traditional op-
timization or a feed-forward MLP. Extensive experiments
on large-scale datasets demonstrate the effectiveness of our
approach, which can consistently generate better 3D hand
predictions despite the strong baseline such as HybrIK.
Acknowledgement. This study is supported under the
RIE2020 Industry Alignment Fund Industry Collaboration
Projects (IAF-ICP) Funding Initiative, as well as cash and
in-kind contribution from the industry partner(s). It is also
partially supported by the NTU NAP grant.



Appendix

A. Implementation Details

In this section, we introduce the implementation details
of IHMR. We first introduce data preprocessing. Then we
introduce the architecture and training details of the base-
line CNN model used in stage-I. After that, we introduce
the design details of the optimization. In the end, we intro-
duce the architecture and training details of the MLP-based
implementation.

A.1. Data Preprocessing

We tightly crop the input images surrounding the bound-
ing boxes of the interacting hands. The hand bounding
boxes are obtained from the 2D keypoint annotations. For
InterHand2.6M dataset [22], we assume the known of hand
types, i.e. single hand (left or right) or interacting hands.
To increase the model’s generalization ability to in-the-wild
scenarios, where no such labels are provided, we follow the
practice of InterNet [22] to additionally predict the hand
type (left, right, or interacting) from input images. The
trained model achieved 96% prediction accuracy on the
whole test set of InterHand2.6M.

A.2. Baseline CNN Model

The input images are cropped, padded, and resized to
224 × 224. The encoder is a ResNet-50 [10]. The param-
eter prediction head is composed of three fully connected
layers whose output dimensions are 1024, 1024, and 122.
The 122 dimensions are composed of camera parameters
(π ∈ R3), shape parameters (β = (βl,βr) ∈ R20), hand
orientation (φ = (φl,φr) ∈ R6) finger pose parameters
(θ = (θl,θr) ∈ R90), and right-to-left-hand relative trans-
lation (τ ∈ R3). The joint head follows the design as In-
terNet [22]. The whole framework, including the encoder,
the parameter prediction head, and the joint head is trained
end-to-end using Adam optimizer [14] with a learning rate
1e−3. The whole model converges after 20 epochs.

A.3. Optimization-based Implementation

The optimization-based method uses Adam opti-
mizer [14] to directly update the estimated parameters ρ̂ ∈
{τ̂ , φ̂, θ̂, β̂}. When refining each parameter set, we use dif-
ferent step size γ and different weights for each objective
listed in Equ.(8) and of the main paper. The values of step
size and objective weights are listed in Tab. A.1. We set
smaller objective weights and step sizes in optimizing right-
to-left-hand relative translation τ̂ . Otherwise, the optimiza-
tion tends to unreasonably increase the overall distances be-
tween collided hands and thus generate worse results.

Table A.1: Weights and step size used in IHMR-OPT. γ is the
step size in optimizing the parameters. Objectives including Fcol
etc. are defined in Equ.(10) of the main paper.

Param ρ̂ ↓ γ Fcol F2D F3D Fτ Freg Ff
τ̂ 1e−4 1e−1 1e+1 1e+3 1e+3 1e−1 0.0

φ̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 0.0

θ̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 1e+5

β̂ 1e−2 1e−0 1e+1 1e+3 1e+3 1e−1 0.0

A.4. MLP-based Implementation

In the MLP-based implementation, each refinement
stage is composed of a Multilayer Perceptron with four fully
connected layers, whose output dimensions are 512, 256,
128, and K, where K is the dimensions of the correspond-
ing parameters. The dimensions for each parameter are 3
for hand translation τ̂ , 6 for hand orientation φ̂, 20 for shape
parameters β̂ and 90 for finger poses θ̄. The training set of
these MLPs are composed of samples with closely interact-
ing hands, following the same selecting criteria of “IH26M-
Inter-Close“ defined in Sec.4.1 of the main paper. We use
the IHMR-OPT to obtain pseudo-ground-truth MANO pa-
rameters for train samples without MANO annotations. The
loss weights for training the MLPs are the same as Equ.(5)
of the main paper. Each MLP is trained for 2 epochs with
the learning rate set as 1e−4. The optimizer is Adam [14].

A.5. HybrIK Implementation

To fill the performance gap between InterNet [22], we
adopt a strong baseline following HybrIK [18]. We use the
estimated 3D joints J̇3D from the joint head of Stage-I. To
be specific, the relative right-to-left-hand translation τ̂ is di-
rectly set as the subtraction of predicted left wrist joints by
the right one. The global hand orientation φ̂ is calculated
using the locations of wrists and the five palm joints through
Singular Value Decomposition (SVD). The finger poses θ̂
are calculated in the standard way of HybrIK. Please be
noted that finger rotations are only composed of swing rota-
tions. Therefore, the finger rotations can be directly solved
from finger joint locations. In the last, we use the origi-
nal shape parameters β̂ predicted from the baseline CNN
model of Stage-I. We suggest to read the original paper of
HybrIK [18] to have a better understanding of how HybrIK
is adopted in our scenario.

B. More Quantitative Results.
Part of the training and testing data have pseudo-ground-

truth MANO [29] parameters obtained from NeuralAn-
not [21]. The number of samples with pseudo GT MANO
annotations are 240K, 65K, 12K, and 4.5K for all four sub-
sets. For samples with pseduo GT MANO annotations, We
further calculate Mean Per Vertex Position Error (MPVPE)



Table A.2: Comparison with SOTA methods on InterHand2.6M using Vertex-Based Method.. We additionally evaluate on subsets
of InterHand2.6M [22] using vertex-based metrics MPVPE and I-MPVPE. AVE-P and MAX-P are adopted to estimate the collision status
of the generated interacting hands.

Dataset & Metrics→ IH26M IH26M-Inter IH26M-Inter-Close
Methods ↓ MPJPE / MPVPE ↓ MPJPE / MPVPE ↓ I-MPJPE / I-MPVPE ↓ AVE-P / MAX-P ↓ MPJPE / MPVPE ↓ I-MPJPE / I-MPVPE ↓ AVE-P / MAX-P ↓
Bouk et al. [3] 21.96 / 18.88 22.55 / 18.86 - - 21.20 / 18.81 - -
Pose2Mesh [5] 21.76 / 18.61 22.73 / 18.91 - - 20.82 / 18.37 - -
BiHand [47] 19.90 / 17.17 21.18 / 17.32 - - 19.80 / 17.47 - -
IHMR-Baseline 21.67 / 17.54 22.60 / 17.62 24.38 / 25.08 0.45 / 9.98 21.24 / 17.56 18.25 / 18.60 0.84 / 14.40
IHMR-MLP 22.79 / 18.16 23.37 / 17.82 21.26 / 21.85 0.33 / 8.03 21.55 / 17.58 16.60 / 16.82 0.68 / 12.67
IHMR-OPT 19.04 / 16.94 24.09 / 18.82 16.82 / 17.23 0.13 / 3.75 19.04 / 16.94 15.40 / 15.33 0.33 / 7.30
IHMR-Baseline∗ 17.05 / 17.18 17.54 / 16.71 14.44 / 12.45 0.29 / 5.76 16.91 / 16.53 13.16 / 11.47 0.69 / 10.72
IHMR-MLP∗ 15.68 / 14.57 16.45 / 14.69 13.64 / 11.81 0.26 / 5.34 15.76 / 14.56 12.46 / 10.77 0.61 / 10.07
IHMR-OPT∗ 15.47 / 17.17 16.52 / 16.44 13.49 / 13.01 0.23 / 4.48 15.32 / 14.73 11.90 / 11.23 0.34 / 7.48

Table A.3: Role of different optimization objectives. We study
the role of three objectives used in the optimization-based factor-
ized refinement, namely 3D objectives F3D , 2D objectives F2D

and objective on hand translation Fτ .

F2D F3D Fτ I-MPJPE ↓ AVE-P ↓
- - - 20.29 0.70
3 18.99 0.14

3 17.07 0.22
3 36.76 0.01

3 3 16.06 0.27
3 3 17.89 0.12

3 3 16.99 0.21
3 3 3 16.94 0.20

Table A.4: Influence of the quality of pseudo-ground-truth 3D
joints. We add noise to ground-truth 3D joints and use these joints
to serve as the pseudo 3D joints, namely J̇3D . For still joints, we
still use the original pseduo-ground-truth 2D joints, J̇2D .

STD of Noise (mm) ↓ I-MPJPE ↓ AVE-P ↓
OPT MLP OPT MLP

0 15.13 17.91 0.183 0.525
10 15.27 18.16 0.152 0.515
20 15.56 18.37 0.170 0.503
30 16.10 18.96 0.178 0.527
40 16.72 19.14 0.181 0.495

and I-MPVPE to reveal the quality of estimated joint rota-
tions and shapes. They follow a similar definition as MPJPE
and I-MPJPE. The results are included in Tab. A.2. The
conclusion we draw from Tab. A.2 is similar to the conclu-
sion we draw from Tab.1 of the main paper. The baseline
models have similar performances. On the most challenging
IH26M-Inter-Close test set, IHMR-OPT reduces the AVE-
P by 60.7% while improving the accuracy of interacting
pose estimation and 3D hand reconstruction by 14.3% and
16.0%. On the other hand, IHMR-MLP can reduce the col-
lision, 3D finger poses error and 3D hand reconstruction
error by 23.5%, 9.0%, and 9.7%.

C. More Ablation Studies

Following the same practice of the main paper, models in
this subsection are evaluated on IH26M-Close-Inter, using
I-MPJPE and AVE-P as the metrics. More ablation studies
are included in the supplemental.

C.1. Influence of Different Optimization Objectives.

In this subsection, we study the role of several objectives
used in the optimization implementation of the factorized
refinement. The studied objectives include the 2D objective
F2D, the 3D objective F3D and the translation objective
Fτ . The results are listed in Tab. A.3. When 2D or 3D joint
objectives are adopted, both the 3D joint estimation error
and collision status can be reduced. When there is only the
translation objective been adopted, although the collisions
are almost totally removed, the joint estimation is ruined.
In general, adopting all three objectives can lead to be best
result with both good joint pose estimation and less collision
status.

C.2. Influence of Joint Quality.

To evaluate the convergence of the proposed factor-
ized refinement, we conduct experiments in which pseudo-
ground-truth 3D joints J̇3D are replaced with ground-truth
3D joints with noise. The noise is sampled from Gaussian
distribution with 0 mm mean and standard deviation rang-
ing from 0 mm to 40 mm. For 2D joints, we still use the
original pseudo-ground-truth 2D joints J̇2D obtained from
the joint head. The results are listed in Tab. It is revealed
that: (1) The proposed factorized refinement is robust to the
noise. When the standard deviation of the added noise is in-
creased to 40 mm, IHMR-OPT and IHMR-IHMR can still
decrease the 3D joint estimation error by 17.6% and 5.7%.
(2) The accuracy of 3D joint estimation is in proportion to
the preciseness of the pseudo ground-truth 3D joints J̇3D.
(3) The effectiveness of collision removal has less correla-
tion with the quality of J̇3D.



Input IHMR-MLP IHMR-OPT IHMR-OPTIHMR-MLP

Figure C.1: Qualitative Comparison between IHMR-MLP and IHMR-OPT. We qualitatively compare between IHMR-MLP and
IHMR-OPT. Collided regions are marked with red circles.

Input Baseline IHMR-MLPBaseline Input Baseline IHMR-MLPBaseline

Figure C.2: Compare with SOTA single-hand method. In this figure, we qualitatively compare with single-hand baseline, i.e. Bouk [3].
From left to right are input images, predicted right hands from the baseline, predicted left hands from the baseline and predicted interacting
hands from IHMR-MLP. Imprecise hand poses or finger poses generated by the single-hand method are marked with red arrows.
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Figure C.3: Role of Ff . In this figure, we demonstrate the role
of Ff plays in optimization. From left to right are input images,
optimized results without using Ff , optimized results with using
Ff . Twisted fingers generated by optimization without using fin-
ger regularization Ff are marked with red circles.

Input IHMR-MLP IHMR-MLP

Figure C.4: Typical Failure Cases. Typical failure cases of
IHMRare caused by challenging finger poses and collusions.

D. More Qualitative Results

In this section, we show more qualitative results, in-
cluding qualitative comparison between IHMR-MLP and
IHMR-OPT, comparison between IHMR-MLP between
single hand baseline, and quanlitative results demonstrat-
ing the effectiveness of finger regularizationFf , and typical

failure cases.

D.1. Comparison between Optimization and MLP

We show quanlitative comparison between IHMR-OPT
and IHMR-MLP in Fig. C.1. It is revealed that the
optimization-based implementation can produce better 3D
reconstructed hands with more precise joint estimation and
fewer collisions.

D.2. Compare with Single-hand Methods

In this subsection, we qualitatively compare IHMRwith
the single-hand baseline, i.e. Bouk et al. [3]. The results are
shown in Fig. C.2. It is revealed that the proposed IHMR
can generate more precise interacting 3D hands than single-
hand methods, which can only treat interacting hands as iso-
lated single hands.

D.3. Influence of Finger Regularization

In this subsection, we show the influence of applying fin-
ger regularizationFf defined in Equ.(12) of the main paper.
Several examples are listed in Fig. C.3. It is revealed that
without applying Ff , optimization methods tend to gener-
ate twisted fingers as marked by red circles in Fig. C.3.

D.4. Failure Cases.

We show several typical failure cases in Fig. C.4. As the
results show, typical failure cases are caused by challenging
poses and occlusions.
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